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Abstract

Photoplethysmography (PPG) is increasingly consid-
ered for detecting out-of-hospital cardiac arrest (OHCA),
but publicly available datasets remain scarce. We present
a method to identify cardiac arrest episodes captured by
PPG in the MIMIC-III database, combining automated
screening with manual annotation of waveform and clin-
ical data. Using this approach, we compiled 36 anno-
tated cardiac arrest episodes from 31 patients. The dataset
will be publicly available on PhysioNet and provides a
resource for developing and validating wearable OHCA
detection technologies. Our method is also adaptable to
other clinical events.

1. Introduction

Photoplethysmography (PPG) is an optical method to
determine the relative changes in blood volume in the skin
by measuring light absorption. In the context of wearable
devices, it has gained interest as a method to measure car-
diovascular parameters continuously and non-invasively,
including heart rate, oxygen saturation, pulse rate variabil-
ity, cuffless blood pressure, and blood glucose levels [1].
Special interest has been shown in the detection of obstruc-
tive sleep apnea [2], signs of infection [3], heart failure [4],
and atrial fibrillation [S5, 6].

One emerging application is the detection of out-of-
hospital cardiac arrest (OHCA). As 29.7% to 63.4% of the
OHCA episodes go unwitnessed [7], the use of automated
monitoring with PPG could improve survival rates and pa-
tient outcomes. Several research teams, such as BECA [8],
DETECT [9], HEART-SAFE [10], and Google Research
[11], are actively working on this technology.

A major challenge is the availability of PPG mea-
surements during cardiac arrests. Although the above-
mentioned projects mostly simulate or approximate (out-
of-hospital) cardiac arrest, real data remains vital for algo-
rithm development and validation. To our knowledge, until
now, PhysioNet has published only a single dataset con-
taining PPG and annotated life-threatening arrhythmias, as
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Figure 1. An example of an episode of ventricular fib-
rillation (marked by a red background) in the MIMIC-
IIT database. Photoplethysmography (PPG), electrocardio-
gram (ECG) and arterial blood pressure (ABP) are shown.
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Figure 2. Relational database tables with the columns

of interest (marked blue), inter-table relationships (black
lines), comparison operations (yellow lines) and value
searches (red lines).

part of the PhysioNet/Computing in Cardiology Challenge
2015 [12]. Other arrhythmia datasets, such as the MIT-
BIH Arrhythmia Database, do contain occurrences of car-
diac arrest, but not in PPG signals [13].

One PhysioNet dataset sparks interest about this topic:
the MIMIC-III critical care database, which contains data
from 38,597 adult ICU patients [14]. MIMIC-III contains
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not only bedside monitor waveforms, including PPG, but
also anonymized electronic medical record (EMR) data.
Given the vast number of patients and their health con-
ditions, episodes of cardiac arrest are expected to occur in
this dataset. However, the size of the dataset makes it im-
practical to manually screen for cardiac arrest episodes.

In this work, we present a method for identifying
episodes of PPG-captured cardiac arrest in the MIMIC-III
database, for example, as shown in Figure 1. We show that
the use of the relational database of clinical data and auto-
mated bedside monitor heart rhythm classifications point
to cardiac arrest episodes. Finally, we describe the derived
dataset, which is published on PhysioNet.

2. Methods

2.1. Data acquisition

We acquired the EMR data from the MIMIC-III Clin-
ical Database (version 1.4) [15] and the waveform data,
matched to the EMR data, from the MIMIC-III Wave-
form Database Matched Subset (version 1.0) [16]. The
EMR data were inserted directly into a SQLite relational
database. For each waveform record, we extracted the
subject ID, start and end time of the recording, and the
available waveform signal names from the metadata, and
inserted this into the WAVEFORMS table in the SQLite
database. A diagram of the relevant tables and column
headers is presented in Figure 2.

2.2. Identifying candidate cardiac arrests

Potential cardiac arrests were identified by searching
for bedside monitor-annotated cardiac arrest events in the
CHARTEVENTS database table. Inspection of the D_ITEMS
and CHARTEVENTS tables led us to the required val-
ues of CHARTEVENTS.itemid and CHARTEVENTS.value
that indicate ventricular tachycardia/fibrillation or asys-
tole in both hospital systems used. For the CareVue hos-
pital system, we require itemid = 212 and value €
{Asystole, Vent. Tachy, Ventricular Fib}. For the MetaVi-
sion system, we require itemid = 220048 and value &<
{Asystole, VT (Ventricular Tachycardia),

VF (Ventricular Fibrillation)}.

The waveform files were matched to the EMR data using
the subject_id field. To exclude bedside monitor rhythm
classifications that were not accompanied by waveform
signals, we set the condition that the classification event
should be charted between the start and end time of the
matched waveform records, e.g., WAVEFORMS.starttime <
CHARTEVENTS.charttime < WAVEFORMS.endtime.

Another condition is the presence of a PPG signal
(in MIMIC-III: PLETH, PLETH_L, PLETH R, PLETHI,

PLETHYr). Furthermore, to allow for verification of car-
diac arrests in the PPG signal, we added the requirement
that either the electrocardiogram (ECG, lead II/II+) or the
continuous arterial blood pressure (ABP/ART) signal had
to be present as a reference.

Lastly, we excluded any patient who was underage
(<18 years) at the time of hospital admission, e.g.,
ADMISSIONS.admittime - PATIENTS.dob > 18 years.

2.3.  Manual annotation of cardiac arrests

After identifying candidate cardiac arrest events, we
manually reviewed these events by inspecting the PPG,
ECG, and ABP waveforms around the event time
stamp, and if present, the discharge notes in the
NOTEEVENTS table corresponding to the hospital admis-
sion (NOTEEVENTS.hadm_id = CHARTEVENTS.hadm_id).
To ensure that only clinically meaningful cardiac arrest
episodes were retained, events were excluded whenever
one of the following conditions was met:

« The PPG was unavailable/unreliable at the event times-
tamp, for example, due to motion artifacts or sensor dis-
connect.

« Both the ECG and ABP were unavailable/unreliable at
the event timestamp, for example, due to clipping.

« Ventricular tachycardia is present, but is not associated
with loss of pulse (non-life-threatening VT).

o There is no VF/VT/asystole present between one hour
before the event timestamp and one hour after (false detec-
tion).

« The event points to the same cardiac arrest episode as
another event (duplicate).

All events that were not excluded are considered part of
the final dataset. For each of these events, the start and end
of the cardiac arrest episode have also been determined. If
a waveform record ended before the end of cardiac arrest,
the end timestamp was set to the end of the record.

24. Population characteristics

After cardiac event selection, population characteris-
tics were derived from other tables in the dataset. The
patient’s sex was taken from the PATIENTS.gender col-
umn, and the age was calculated based on the time differ-
ence between the date of birth and the date of admission
(ADMISSIONS.admittime - PATIENTS.dob). The initial di-
agnosis at admission (admissions.diagnoses) was catego-
rized based on medical specialty.

3. Results

Given the more than 5 million bedside monitor heart
rhythm classifications present in the CHARTEVENTS ta-
ble, our methodology resulted in the identification of 36
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Figure 3. Flowchart of the study population. The left
column shows the (left-over) population, while the right
column shows the excluded population.

cardiac arrest episodes in 31 unique patients, highlighting
the rarity of (PPG-captured) in-hospital cardiac arrest. An
example of a cardiac arrest episode is shown in Figure 1.
A flowchart of the study population per exclusion step is
shown in Figure 3.

Looking at the characteristics of the study population
in Table 1, most of the cardiac arrests occurred in men
(74%). The average age of the population is 67 (£ 15)
years. A majority of the patients were initially admitted
with cardiovascular-related diagnoses.

The dataset derived in this work will be made publicly
available on PhysioNet under the PhysioNet Credentialed
Health Data License 1.5.0.

4. Discussion

In this work, we have shown that the use of heart
rhythm classifications from bedside monitors can be used
to find a reasonable number of PPG-captured cardiac ar-
rest episodes in the MIMIC-III database. Automatic filter-
ing of events based on EMR data drastically reduces the
workload of manual annotations. The methodology could
also be generalized to other types of events, such as other
cardiac arrhythmias.

However, one always has to consider the source of the

Table 1. Population description

Characteristic n (%)
Sex
Male 23 (74%)
Female 8 (26%)
Age [years]
18-29 2 (6%)
30 - 49 0 (0%)
50-59 6 (19%)
60 - 69 8 (26%)
70-79 7 (23%)
> 80 8 (26%)
Initial diagnosis
Cardiac 16 (52%)
Neurologic 4 (13%)
Respiratory 4 (13%)
Oncologic 2 (6%)
Gastrointestinal 2 (6%)
Other 3 (10%)

EMR data used. In this work, the cardiac monitoring func-
tionality of the bedside monitors was used as a guideline
for cardiac arrest timestamps, but these monitors produced
false alarms (in our case: 31) and probably missed or did
not register cardiac events. For example, approximately
1600 patients do not have entries in CHARTEVENTS, mak-
ing the presented methodology unsuitable for finding car-
diac arrests in the records of those patients.

Furthermore, only a third of the waveform records in the
MIMIC-III Waveform Database have been matched to the
Clinical Database, which results in the inability to match
many cardiac arrest events in the Clinical Database to a
specific waveform record. Figure 3 illustrates this limita-
tion, as a drastic decrease in events occurs after matching
waveform records (2,707 to 347 events). The presented
dataset should therefore not be considered as if it contains
all cardiac arrest episodes in the MIMIC-III database, but
just a subset of episodes found in the context of bedside
monitor algorithm sensitivity/specificity.

To broaden the search for cardiac arrest episodes in the
MIMIC-III database, one should look beyond the use of
only EMR data. Therefore, future work could include
the application of ECG/ABP-based detection algorithms,
combined with manual annotation, to find more PPG-
captured cardiac arrests.

Finally, in the context of OHCA detection, a fundamen-
tal limitation of the current work is found in the differ-
ences between data acquisition settings. MIMIC-IIT wave-
form data is captured from ICU (in-hospital cardiac arrest,
IHCA) patients with finger clip PPG, while OHCA detec-
tion technology is applied to detect OHCA and could cap-
ture PPG at more convenient sites, such as the wrist. This
limits direct generalization to out-of-hospital settings.
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5. Conclusion

In this work, we presented a method for identifying car-
diac arrest episodes, captured by PPG, in the MIMIC-III
database. The method can be easily adapted to identify
other types of events. Applying this approach, we com-
piled a dataset consisting of 36 cardiac arrest episode anno-
tations in 31 unique patients, which could be helpful in the
development and validation of wearable OHCA detection
technologies. The dataset will be available on PhysioNet.
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